One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature
نویسندگان
چکیده
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade-off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.
منابع مشابه
Interactions between Ocean Acidification and Warming on the Mortality and Dissolution of Coralline Algae(1).
Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative e...
متن کاملAcclimatization of the Crustose Coralline Alga Porolithon onkodes to Variable pCO2
Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO₂ that exceed OA projections for the near future. To understand the influence of dynamic pCO₂ on an important reef calcifier, we tested the r...
متن کاملDiversity, growth forms and rhodolith distribution: factors controlling the fabric of coralline algae of the early Miocene deposits, Cairo – Suez road, Egypt
The Lower Miocene deposits in Gabal Gharra, Cairo – Suez District, unconformably overlies the Oligocene and Eocene deposits. They consist predominantly of regressive and transgressive mixed siliciclastic / carbonate sediments of shallow marine environments. The Lower Miocene deposits are represented lithostratigraphically by the Gharra Formation that comprises four members, from base to top: Ag...
متن کاملReviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial
The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage...
متن کاملPresence of skeletal banding in a reef-building tropical crustose coralline alga
The presence of banding in the skeleton of coralline algae has been reported in many species, primarily from temperate and polar regions. Similar to tree rings, skeletal banding can provide information on growth rate, age, and longevity; as well as records of past environmental conditions and the coralline alga's growth responses to such changes. The aim of this study was to explore the presenc...
متن کامل